Sample Selection Based on Active Learning for Short-Term Wind Speed Prediction
نویسندگان
چکیده
منابع مشابه
Hybrid Prediction Model for Short Term Wind Speed Forecasting
Due to notable depletion of fuel, non-conventional energy aids the present grid for Power management across the country. Wind energy indeed has major contribution next to solar. Prediction of wind power is essential to integrate wind farms into the grid. Due to intermittency and variability of wind power, forecasting of wind behavior becomes intricate. Wind speed forecasting tools can resolve t...
متن کاملNeural Networks for Short Term Wind Speed Prediction
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depend...
متن کاملPerformance Analysis of ANFIS in short term Wind Speed Prediction
Results are presented on the performance of Adaptive NeuroFuzzy Inference system (ANFIS) for wind velocity forecasts in the Isthmus of Tehuantepec region in the state of Oaxaca, Mexico. The data bank was provided by the meteorological station located at the University of Isthmus, Tehuantepec campus, and this data bank covers the period from 2008 to 2011. Three data models were constructed to ca...
متن کاملShort-term wind speed estimation based on weather data
For accurate and efficient use of wind power, it is important to know the statistical characteristics, availability, diurnal variation, and prediction of wind speed. Prediction of wind power permits the scheduling of the connection or the disconnection of wind turbines to achieve optimal operating costs. In this paper, a simple and accurate method for predicting wind speed based on weather-sens...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2019
ISSN: 1996-1073
DOI: 10.3390/en12030337